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Abstract.   Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh 
forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh 
Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of 
organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of 
deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground 
peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. 
We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs 
to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test 
the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from 
Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were 
evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from 
Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model 
was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 
8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well 
represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the 
model domain. Trend response surface analysis identified significant diversion between field and remote 
sensing-based model runs at 60  yr due to model sensitivity at the marsh edge (80–140  cm NAVD88), 
although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm 
NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections 
due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of 
remote sensing data with MEM should advance regional projections of marsh vegetation change by better 
parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning 
for ecosystem services, including habitat, carbon storage, and flood protection.
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Introduction

Management need
The recent Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change 
(Church et al. 2013) provides new, increased pro-
jections for global mean sea-level rise (SLR) by 
2100 based on a range of mechanistic scenarios. 
Sea-level change along the coast likely will have a 
strong regional pattern due in particular to differ-
ences in vertical land motion (Burkett and 
Davidson 2012). Thus, SLR will be most effec-
tively projected at regional scales, and its impacts 
most evident at the state and local levels. At these 
scales, the impacts of climate change and the 
associated economic costs of lost productivity, 
damaged infrastructure, and increasing emer-
gency response costs become more apparent. In 
addition, SLR could result in the loss of tidal wet-
lands, with rates and extent of loss varying both 
in space and time (Thorne et  al. 2014). Tidal 
marshes positively affect wave attenuation and 
shoreline stabilization (Shepard et al. 2011) and 
provide natural defense against coastal flooding 
(Temmerman et al. 2013). Tidal marshes provide 
habitat for hundreds of fish and wildlife 
species  (Batzer and Baldwin 2012), and tidal 
marsh soil  carbon accretion may average over 
200 g C·m−2·yr−1 (though varies widely) (McLeod 
et al. 2011). However, marsh die-off due to SLR 
could reduce coastal protection from flooding 
(Temmerman et al. 2012), reduce carbon seques-
tration potential (McLeod et al. 2011), and lead to 
extinction and extirpation of resident wildlife 
populations (Thorne et al. 2012).

Decisions in anticipation of these projected 
changes, including decisions related to land use 
planning and development, habitat manage-
ment, and infrastructure design, are commonly 
made at the local level (Whitely Binder et  al. 
2010). Coastal planners are seeking ways to adapt 
to and mitigate climate change impacts, but man-
aging future risks is complicated by uncertainty 
in the distribution and extent of these impacts 
and by the long time horizons over which they 
may occur (Tompkins et al. 2008). To address the 
uncertainty in future effects of climate change on 
coastal ecosystems, new regional planning doc-
uments are calling for the use of scenario plan-
ning and forecast models. For example, the 2013 
Delta Plan for the Sacramento–San Joaquin Delta 

and Suisun Marsh in California (California Water 
Code Section 85054) calls for “the development 
of landscape-scale conceptual models to guide 
habitat restoration and for modeling future sce-
narios and predicting system-wide responses 
using interdisciplinary teams.” However, models 
for most areas do not exist due to lack of suffi-
cient data (Thorne et al. 2015).

One organization supporting coastal adap-
tive management is NOAA’s National Estuarine 
Research Reserve System (NERRS), a network of 
28 reserves distributed around the United States 
coastline. These reserves serve as regional refer-
ence sites to assist local communities in address-
ing coastal management issues (Buskey et  al. 
2015). In recent years, reserve managers and 
researchers have identified the need to reduce 
uncertainty in forecast models, particularly for 
inputs such as suspended sediment concentra-
tion (SSC) (Ferner et  al., in press). As collabora-
tors in this study, NERRS scientists have stated 
an interest in predicting tidal marsh responses to 
SLR where access to ground data is difficult; in 
addition, they would like to shift from analyzing 
extreme future scenarios, and instead model finer 
patterns of change in time and space (J. Crooks, 
personal communication, August 2014).

Marsh accretion processes
Efforts to understand tidal marsh elevation 

and habitat response have been ongoing for 
almost three decades (e.g., McKee and Patrick 
1988, Morris and Haskin 1990, Fagherazzi et al. 
2012) with more emphasis on the potential effects 
of increasing sea level in recent years (Kirwan 
and Guntenspergen 2012, Kirwan and Megonigal 
2013, Morris et  al. 2013, Thorne et  al. 2014). 
Historically, tidal marshes formed over the past 
6000–8000  years as post-glacial rates of SLR 
reached lows of 1–2 mm/yr (Stanley and Warne 
1994). Many marshes have persisted even as sea 
level has risen approximately 8  m, with tidal 
marsh elevations being maintained under both 
saline and freshwater conditions (Drexler et  al. 
2009). However, currently projected increases in 
the rates of relative SLR may surpass potential 
marsh accretion rates, with potential conse-
quences such as loss of elevation-dependent 
coastal habitats. As a result, scientists have devel-
oped and refined a wide range of empirical and 
numerical models of tidal marsh evolution over 
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the past century (see review by Fagherazzi et al. 
2012).

One mechanistic model of tidal marsh evolu-
tion that has shown applicability across multi-
ple salinities and environmental conditions is 
the Marsh Equilibrium Model (MEM) (Morris 
et  al. 2002). The Marsh Equilibrium Model is a 
one-dimensional model that projects change in 
marsh surface elevation with SLR as a function 
of in situ biomass production and deposition of 
suspended sediment. The key outputs are ele-
vation above mean sea level on an annual time 
step to 100 yr, and associated changes in soil and 
biomass carbon sequestration (Schile et al. 2014). 
A main feature of MEM is that it simulates the 
response and feedbacks of marsh vegetation to 
relative elevation. Plant productivity varies with 
relative elevation in a parabolic response across 
a limited range of the tidal frame, with peak pro-
ductivity occurring at an optimal mid-elevation 
point (McKee and Patrick 1988, Morris et  al. 
2013, Morris 2016). An increase in the rate of SLR 
may cross a threshold whereby relative elevation 
becomes sub-optimal for growth and accretion 
rates are insufficient to maintain elevation, lead-
ing to elevation loss (Morris et al. 2002).

The uncertainty in data inputs to coastal fore-
casting models such as MEM can limit predic-
tion accuracy and as a result the usefulness of 
models in management and planning (Runting 
et al. 2013). Consequently, accurate information 
on baseline conditions of tidal marshes, across 
the modeling spatial extent, is essential for gen-
erating realistic forecasts, as baseline conditions 
set the starting trajectory of change. Models of 
tidal marsh elevation response to SLR have been 
populated with field-derived inputs when run at 
the site level (Schile et  al. 2014, Swanson et  al. 
2014). In contrast, landscape models, in develop-
ment since the early 1990s, have been parameter-
ized with organic matter accretion rates derived 
from dated sediment cores, measurements of 
suspended sediment concentration (SSC) and 
biomass at limited representative sites, and 
use of publically available spatial datasets such 
as the U.S. Fish and Wildlife Service National 
Wetlands Inventory (Costanza et al. 1990, Craft 
et  al. 2008, Stralberg et  al. 2011). While in situ 
field data are typically used to calibrate and 
validate MEM, most field-collected datasets are 
not feasible at the regional extents over which 

change is occurring (Goetz and Dubayah 2011). 
Field measurements are labor intensive, often 
expensive, and may impact sensitive wetland 
systems (Zhang et al. 1997). Field data also gen-
erate model uncertainty due to lack of represen-
tativeness (spatial and temporal variability), as 
well as sampling error.

Use of remote sensing for coastal modeling
Ecological studies can be limited in their capac-

ity to quantify stressors both spatially and tem-
porally, but linking remote sensing and in situ 
data with process models can help overcome 
these limitations (Martinez-Lopez et  al. 2015). 
Satellite remote sensing data provide a repeat-
able, standardized approach to assess spatial and 
temporal changes in the functioning of ecosys-
tems (Pettorelli et al. 2014). Also, remote sensing-
based model inputs provide the potential for 
annual updates, without the need for annual 
intensive field sampling. Synoptic and repeated 
remote sensing measurements may improve 
model performance and applicability beyond a 
range of limited sites, while a rich archive of 
freely available historical remote sensing data 
provides the capability for hindcasting. However, 
particularly for coastal habitats, models have uti-
lized only a limited amount of available informa-
tion that can be derived from imagery. These 
have been mainly restricted to the use of land 
cover classifications or variants of the normal-
ized difference vegetation index (NDVI) (Pickens 
and King 2014).

Deriving data inputs from remote sensing 
has the potential to extend the applicability of 
MEM. Although 18 parameters are used to run 
MEM, previous sensitivity analyses have shown 
that once calibrated with soil core profile data to 
constrain soil dynamics, two inputs have a dis-
proportionate influence on model projections 
(Morris et al. 2016) and have significant tempo-
ral and spatial variability: (1) peak aboveground 
biomass (hereafter biomass) (Kirwan et al. 2009); 
and (2) annual average SSC (Weston 2014). Both 
variables can be derived from satellite data 
(Nechad et  al. 2010, Klemas 2013). Normalized 
difference vegetation index and other vegeta-
tion indices derived from moderate resolution 
Landsat images have been used to map tidal 
marsh biomass across the United States (Gross 
et al. 1987, Zhang et al. 1997, Mishra et al. 2012). 
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Hyperspectral data such as from the 224 band 
Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) have the potential to improve biomass 
mapping (Turpie et al. 2015), although there have 
been limited applications that mainly relied on 
vegetation indices (Gonzalez Trilla et  al. 2013, 
Schalles et al. 2013).

The use of remote sensing for observing SSC 
(or total suspended solids) using empirical or 
semi-analytical techniques has become a rou-
tine technique in ocean color research (Matthews 
2011). (In this article, we use the term SSC, the 
MEM input parameter, rather than the term total 
suspended solids). If the scattering and absorb-
ing properties of the dominate sediment type 
are known, the sediment optical properties can 
be incorporated into a marine reflectance model 
(Nechad et al. 2010). These semi-analytical mod-
els are often based on reflectance from a single 
red or near-infrared band, making them suitable 
for a variety of remote sensing platforms.

Satellite remote sensing of natural resources, 
including wetlands, plays a key role in building 
the analytic capacity for decision-making (Clare 
and Creed 2014). An additional consideration 
when applying satellite data is the need for man-
agers to consider acquisition cost, labor needed 
for analysis, and the level of error associated 
with its use (Lu 2006, Lewis et al. 2013). Multiple 
types of imagery are available for mapping at 
varying cost, spatial and spectral resolution, and 
temporal frequency, and each provides different 
advantages. Therefore, a comparison of sensors 
available for a given modeling application can be 
used to evaluate the tradeoffs among these data 
types.

Objectives
We designed a study at the San Francisco Bay 

NERR in Suisun Bay, California, to address two 
questions: (1) How can we use satellite-based 
data to better understand baseline conditions of 
peak biomass and SSC in a brackish tidal marsh, 
given the errors and uncertainties in remote sens-
ing? and (2) How can the spatial and temporal 
distribution and pattern of these variables help 
determine the spatial scale to which coastal mod-
eling with MEM is applicable? To address these 
questions, we tested the feasibility of incorporat-
ing satellite-based estimates of these two vari-
ables into the one-dimensional MEM to transform 

it into a spatial model for forecasting coastal 
marsh elevation and vegetation distributions.

Our approach was to run MEM with remote 
sensing inputs for the first time and apply result-
ing elevation projections with SLR across a digital 
elevation model (DEM). The Marsh Equilibrium 
Model was selected for this study because it mod-
els accretion based on the dynamic feedbacks of 
organic and inorganic inputs with SLR (Morris 
et al. 2002), which is needed to more accurately 
forecast marsh elevation change (Kirwan et  al. 
2016a). The Marsh Equilibrium Model has been 
validated and is applicable to tidal marshes across 
a range of salinity and substrate types (mineral 
and peat soils), including at our study site (Schile 
et al. 2014). Lastly, multiple MEM input variables 
that define tidal marsh conditions are amenable 
to measurement with remote sensing.

In this study, we also determined the most 
appropriate satellite data source in terms of cost, 
data access, and accuracy. To accomplish this, we 
compared 30-m Landsat 8 against 2-m WV2 and 
hyperspectral airborne sensors. Then, Landsat 
8-derived inputs were evaluated in a sensitivity 
analysis of MEM to understand the sensitivity 
of the model to these inputs and their feedbacks. 
Our goal for characterizing baseline conditions 
with satellite data was to reduce uncertainty in 
model inputs and enable managers to produce 
more fine-tuned scenarios of change.

Methods

Study area
This project was conducted at the Solano Land 

Trust Rush Ranch Open Space Preserve (Rush 
Ranch), a site in the San Francisco Bay National 
Estuarine Research Reserve (http://www.sfbay 
nerr.org). Rush Ranch is a highly diverse brack-
ish tidal marsh in the Suisun Marsh complex of 
Suisun Bay, which is the largest and most intact 
brackish tidal marsh system in California (Moyle 
et al. 2014) (Fig. 1). Suisun Bay is a shallow tidal 
estuary below the confluence of the Sacramento 
and San Joaquin rivers, characterized by large 
horizontal salinity gradients with a mean water 
depth of 1.25  m (Jones and Monismith 2007). 
Tides in Suisun Bay are mixed-semi-diurnal with 
a range of approximately 2 m. Prevailing winds 
in Suisun Bay are southwest and produce rela-
tively large wind waves when aligned with the 

http://www.sfbaynerr.org
http://www.sfbaynerr.org
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approximately 13  km fetch (Warner et  al. 2004, 
Jones and Monismith 2007).

Rush Ranch includes 425 ha of brackish tidal 
wetlands and a 32-ha diked managed wetland 
with muted tidal flow. The marsh is composed 
of plant species distributed according to inter-
nal marsh drainage and elevation patterns. The 

lower intertidal zones along sloughs, or “low 
marsh habitat,” are dominated by California 
bulrush [Schoenoplectus californicus (C.A. Mey.) 
Palla], hardstem bulrush [Schoenoplectus acutus 
(Muhl. ex Bigelow) Á. Löve and D. Löve var. 
occidentalis (S. Watson) S.G. Sm.], and cattails 
(Typha spp. L.), all emergent marsh herbaceous 

Fig.  1. Study area: Rush Ranch Open Space Preserve (Rush Ranch) and Suisun Slough, Suisun Marsh, 
California.



November 2016 v Volume 7(11) v Article e015826 v www.esajournals.org

﻿� Byrd et al.

species. The higher intertidal zones on the 
marsh plain or “high marsh habitat” support 
a range of dominant species that include salt 
grass [Distichlis spicata (L.) E. Greene], Baltic 
rush (Juncus balticus Willd.), three-square bul-
rush [Schoenoplectus americanus (Pers.) Volkart ex 
Schinz and R. Keller], and pickleweed (Salicornia 
pacifica Standl.) (Grewell et al. 2014, Schile et al. 
2014). An invasive plant, perennial pepperweed 
(Lepidium latifolium L.) in the Brassicaceae fam-
ily, characterized by numerous woody stems 
and clusters of small, white flowers, has become 
common in portions of Rush Ranch. Marsh sub-
strate is predominantly highly organic, peat soils 
including Joice muck and Tamba mucky clay 
(Soil Survey Staff 2009).

In a previous study in 2011, field data on marsh 
vegetation, including peak biomass, soils, and 
elevation, were collected to calibrate MEM for 
Rush Ranch. No published data on SSC within 
the marsh were available; therefore, MEM was 
run for three estimated high, middle, and low 
concentrations (Schile et  al. 2014). Model hind-
cast of historical vertical accretion rates over the 
past 100 years was compared to rates calculated 
using 210Pb dating of six soil cores (Callaway 
et  al. 2012), with model output consistently 
matching core-based accretion rates (Schile et al. 
2014). Subsequently in January 2014, in a second 
independent study, SSC was measured on the 
marsh plain of Rush Ranch using siphon sam-
plers at high tide across eight days, along four 
transects located perpendicular to the marsh 
channel edges (Ferner et al., in press).

Mapping aboveground biomass
During summer 2014, we built empirical models 

of aboveground biomass of Suisun Marsh emer-
gent vegetation based on satellite reflectance. We 
evaluated three sensors for mapping biomass: 30-m 
Landsat 8, 2-m WV2, and 16-m AVIRIS (Table 1).

Biomass field data collection.—Beginning 19 May 
and continuing through August 8, we sampled 
aboveground biomass and other ancillary data at 
Rush Ranch and adjacent marshes, including 
Hill  Slough and Joice Island, which are part 
of  the  California Department of Fish and 
Wildlife  Grizzly Island Wildlife Area (Fig.  1). 
Biomass sampling occurred approximately every 
2–3 weeks to capture a wide range in biomass val-
ues, and to capture peak biomass that generally 
occurs in August (Schile et al. 2011). More inten-
sive sampling occurred late May/early June, 
when AVIRIS flights were planned.

We sampled five to six regularly distributed 
sample plots in 59 Landsat pixel footprints. Pixel 
footprints were distributed across dominant 
plant communities and located along transects 
perpendicular to channel edges, where peak bio-
mass is typically located (Schile et al. 2011). Plot 
locations were recorded with a Trimble GeoXT 
(Sunnyvale, California, USA) sub-meter accuracy 
global positioning system. At each plot, within 
a square meter quadrat, we visually estimated 
percent cover of the top three dominant species, 
percent cover live and dead vegetation, percent 
cover bare soil, thatch height, and water depth. 
We sampled live aboveground biomass within a 
smaller, 0.1-m2 quadrat nested in the 1-m2 quad-
rat. For two dominant plants, cattail (Typha spp.) 
and hardstem bulrush (S. acutus), we estimated 
biomass with well-established allometric equa-
tions (Miller and Fujii 2010, Byrd et  al. 2014) 
to reduce impact to marsh vegetation. For all 
other plant species, we clipped vegetation to the 
ground level, separated green vegetation from 
dead, and then dried green vegetation at 55°C 
before weighing. All biomass measurements 
were scaled to a square meter.

Image acquisition and pre-processing.—We 
downloaded six Landsat 8 scenes from http://
earthexplorer.usgs.gov/. We obtained four new 

Table 1. Satellite and airborne sensors compared in this study.

Sensor
Sensor  
type

Spatial  
resolution (m)

No. of  
bands

Wavelength  
range (nm)

Dynamic 
range (bits)

Landsat 8 OLI Multispectral satellite 30 8 430–2290 12
WorldView-2 Multispectral satellite 2 8 400–1040 11
AVIRIS Hyperspectral airborne 16 224 380–2500 16
PRISM Hyperspectral airborne 3 246 350–1050 14

Note: AVIRIS, Airborne Visible/Infrared Imaging Spectrometer.

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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monthly WV2 images of the study region from 
May through August from the Commercial 
Imagery-Derived Requirement Tool of the U.S. 
Geological Survey (https://cidr.cr.usgs.gov/). We 
downloaded an AVIRIS Level 2 orthocorrected, 
surface reflection product from the AVIRIS website 
(http://aviris.jpl.nasa.gov/) flown with NASA’s 
ER-2 aircraft on 28 May 2014 as part of NASA’s 
Hyperspectral Infrared Imager preparatory 
airborne campaign (http://hyspiri.jpl.nasa.gov/). 
Of the 224 AVIRIS bands, 20 bands in the water 
absorption wavelength regions of 1363–1412  nm 
and 1821–1927 nm were removed due to noise. We 
atmospherically corrected Landsat 8 and WV2 
images using the ENVI atmospheric correction 
module FLAASH v5.1 (Fast Line-of-sight Atmo
spheric Analysis of Spectral Hypercubes) with 
atmosphere settings based on models of the 
approximate geographic location (ITT Visual 
Information Solutions 2013). The AVIRIS data were 
atmospherically corrected according to a modified 
Atmospheric REMoval algorithm (Green et  al. 
1998, Thompson et  al. 2015). WV2 images were 
orthocorrected using ENVI’s rational polynomial 
coefficients orthorectification tool and ground 
control points to achieve a positional accuracy of 
<1  m. All images were reprojected to meters in 
UTM Zone 10 WGS 84.

Biomass modeling.—We built two multi date 
datasets: one from six Landsat scenes and a 
second from four WV2 scenes. We built a single-
date dataset from the AVIRIS scene. For all 
sensors, reflectance data were matched with 
biomass data collected on average within 4 d of 
image acquisition, with a maximum of 14  d 
between one dataset and a WV2 July image. 
Biomass values from each plot were attributed to 
a WV2 pixel. Biomass values from plots located 
in the same footprint of a Landsat 8 or AVIRIS 
pixel were averaged, and average biomass values 
were attributed to reflectance from the corres
ponding pixel.

For both Landsat 8 and WV2 sensors, we 
tested the statistical relationships between field 
measurements, standard indices and simple 
ratio indices, and two-band vegetation indi-
ces (Thenkabail et  al. 2004) (Table  2). We also 
tested the enhanced vegetation index, the wide 
dynamic range vegetation index (WDRVI), and 
the soil-adjusted vegetation index due to their 
success in other remote sensing studies of marsh 

biomass (Langley and Megonigal 2012, Mishra 
et  al. 2012). The best regression models were 
established for each sensor. Regression models 
were run using bootstrap estimation with a res-
ample size of 50, using a total of 50 iterations to 
measure prediction accuracy. Before data anal-
ysis, we log-transformed biomass values in the 
Landsat 8 dataset and square-root-transformed 
biomass values in the WV2 dataset to produce 
normal distributions and minimize the number 
of outliers.

A portion of Landsat 8 pixels used for model 
development were located at channel edges and 
included partial cover of open water. To improve 
estimation of biomass in these pixels, fraction 
vegetation cover (FVC) was calculated in ArcGIS 
10.2 (ESRI Inc. 1999–2014) using a vector-based 
vegetation map of Suisun Marsh produced by the 
California Department of Fish and Wildlife from 
2009 high-resolution aerial photography (CDFG 
2012). Average biomass values were scaled by 
FVC for model development. Vegetation indices 
were tested for a subset of pixels that were fully 
vegetated and also for the complete dataset with 
scaled biomass values. For WV2 and AVIRIS 
datasets, all plots were located within fully veg-
etated pixel footprints, so no measured biomass 
values were scaled by FVC.

Partial least squares regression (PLS), a multi-
variate analysis (Geladi and Kowalski 1986, Mevik 
and Cederkvist 2004), is a common approach for 
the analysis of hyperspectral data (Chen et  al. 
2009, Byrd et al. 2014). For AVIRIS, we used PLS 
to model aboveground biomass based on canopy 
reflectance from the 204 AVIRIS bands using the 

Table 2. Vegetation indices tested in Landsat 8 and 
WorldView-2 biomass models.

Index Formula

Two-band vegetation 
indices

TBVIij = (Rj − Ri)†/(Rj + Ri)

Simple ratio indices SRij = Rj/Ri
Enhanced vegetation 

index
EVI = [2.5 × (NIR − R)/(1 + NIR + 

(6 × R − 7.5 × B))]
Wide dynamic range 

vegetation index
WDRVI2 = (0.2 × NIR − R)/(0.2 

× NIR + R)
WDRVI5 = (0.5 × NIR − R)/(0.5 

× NIR + R)
Soil-adjusted vegetation 

index
SAVI = (NIR − R) × 1.5)/(NIR +  

R + 0.5)

Note: NIR, near-infrared reflectance; R, red reflectance.
† Ri and Rj are the reflectance values in bands i and j.

https://cidr.cr.usgs.gov/
http://aviris.jpl.nasa.gov/
http://hyspiri.jpl.nasa.gov/
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PLS package in R (Mevik and Wehrens 2007). 
We minimized model overfitting by selecting the 
number of components corresponding to the first 
local minima for root mean square error (RMSE) 
of prediction, estimated using leave-one-out cross 
-validation (Mevik and Wehrens 2007).

For all models, we reported the explained 
variance (R2), the RMSE (actual vs. predicted 
biomass measurements), and the per cent nor-
malized RMSE (%RMSE). As the goal of biomass 
mapping was to estimate peak biomass, for each 
model we tested the prediction accuracy for high 
biomass plots by calculating RMSE for plots with 
biomass values in the top 90th percentile (Byrd 
et al. 2014).

Biomass maps and pattern analysis.—Biomass 
maps were generated for an 9 August Landsat 8 
image, an 6 August WV2 image, and the 28 May 
AVIRIS image using the best models from the 
three sensors. For AVIRIS and Landsat 8, 
estimated biomass values were scaled to FVC if 
FVC was greater than 50%. Peak biomass for each 
map was determined as the maximum biomass 
value estimated within the tidal marsh at Rush 
Ranch (Fig. 1). For the Landsat 8 map, we plotted 
peak biomass values (range: 90th pct. RMSE 
value to maximum) high-resolution 1-m2 DEM, 
which was lidar-derived and vegetation-
corrected to surface elevations (NOAA Coastal 
Services Center 2012, Schile et al. 2014) to assess 
the relative position of peak biomass within the 
tidal frame. We also calculated the Global 
Moran’s I statistic for spatial autocorrelation 
(Getis and Ord 1992) in ArcGIS 10.2.2 to 
determine whether Landsat 8 peak biomass 
values were dispersed, random, or clustered 
across the marsh spatial extent.

Mapping suspended sediment concentration
During spring 2014, we built semi-analytical 

models of SSC for Suisun Bay and adjacent 
sloughs based on the inherent optical properties 
of local sediments and satellite reflectance. We 
evaluated three sensors for mapping SSC: 30-m 
Landsat 8, 2-m WV2, and 3-m PRISM data 
(Table  1). PRISM is an airborne hyperspectral 
sensor designed for aquatic remote sensing in the 
coastal zone (http://prism.jpl.nasa.gov/prism_
data.html).

In situ data collection of SSC and inherent optical 
properties.—On 5 May 2014, 11 samples of SSC 

were collected in Suisun Bay and in the 
neighboring sloughs from 0.5 m below the water 
surface with a Niskin sampler. The data were 
collected near the same time as a Landsat 8 scene 
and a WV2 scene, which were captured appro
ximately an hour and fifteen minutes apart. On 
28 April, in coordination with collection of nine 
PRISM scenes over the Suisun Bay area and the 
neighboring sloughs, we collected water samples 
at 12 different stations during the flyover and 
analyzed them for SSC. Water samples were 
analyzed in the laboratory using standard 
filtration methods (APHA 1975, USEPA 1979).

Mass-specific absorption values at six locations 
near the study site were determined using data 
collected on 12 March 2014. Absorption from unfil-
tered water and water filtered with a 0.2-μm filter 
was measured at nine wavelengths ranging from 
412 to 715 nm using an ac-9 (WETLabs, Philomath, 
Oregon, USA). Water samples for determination 
of SSC were collected simultaneously. Particulate 
absorption was calculated by subtracting filtered 
absorption from unfiltered absorption. Particulate 
absorption data were scatter-corrected according 
to Röttgers et al. (2013). The mass-specific absorp-
tion was calculated by normalizing the scatter-
corrected particulate absorption coefficient by the 
SSC concentration.

Image acquisition and pre-processing.—For the 
Landsat 8 image, top of atmosphere reflectances 
were Rayleigh-corrected using the correction 
method and Rayleigh optical thickness values 
from Vanhellemont and Ruddick (2014). Using 
the Rayleigh-corrected image, the ratio of band 5 
(NIR, centered at 865 nm) and band 6 (shortwave 
infrared [SWIR], centered at 1610 nm) in “clear 
water” pixels selected several kilometers off the 
California coast were used to determine the 
shape of the aerosol reflectance spectrum. These 
ratios were used to determine the magnitude of 
aerosol reflectance over the study site for band 5 
(Gordon and Wang 1994). The aerosol reflectance 
was removed from the Rayleigh-corrected image 
to yield the surface water reflectance.

WV2 scenes were also Rayleigh-corrected 
according to Vanhellemont and Ruddick (2014). 
However, the Rayleigh optical thickness and 
ozone optical thickness were determined by tak-
ing the band averages of the Rayleigh and ozone 
thickness tables from Frohlich and Shaw (1980) 
and Serdyuchenko et al. (2014), respectively. Due 

http://prism.jpl.nasa.gov/prism_data.html
http://prism.jpl.nasa.gov/prism_data.html
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to lack of SWIR bands, a different aerosol correc-
tion, which assumes a constant ratio between two 
bands (band 7 [NIR1, centered at 833  nm] and 
band 8 [NIR2, centered at 949 nm]), was used to 
correct the WV2 scenes as suggested by Ruddick 
et  al. (2000, 2006). PRISM’s radiometric data 
were atmospherically corrected and converted 
to reflectance using a modified Atmospheric 
REMoval algorithm (Thompson et al. 2015). For 
more information, see Fichot et al. (2016).

SSC modeling.—Due to partial cloud cover, 
seven in situ SSC samples collected at the time of 
the 5 May Landsat 8 overpass were used to 
calibrate a single band semi-analytical model of 
ocean reflectance (Nechad et al. 2010). The Rush 
Ranch area contains very high concentrations of 
chromophoric dissolved organic matter (CDOM), 
which limited the use of the Landsat 8 red band 
(band 4) (Fichot et al. 2016). Instead, we used the 
Landsat 8 NIR band (band 5), which is sensitive 
to SSC scattering (Doxaran et al. 2003).

Mass-specific absorption values were extrap-
olated from ac-9 measurements using an expo-
nential function (Eq. 1) and was estimated to be 
0.0104  m2/g at 865  nm (absorption per gram at 
band 5 center). The exponential function had an 
R2 of 0.96 and RMSE of 0.0085 m2/g.

The estimated mass-specific absorption at 
865 nm was used in the Nechad et al. (2010) sin-
gle band algorithm. The mass-specific backscat-
tering coefficient was determined by fitting the 
single band algorithm to the seven SSC-Landsat 8 
matchups collected on 5 May to calculate a value 
of 0.0125 m2/g at 865 nm. This value falls within 
the mass-specific scattering values reported in 
the literature (Neukermans et al. 2012).

A WV2 single band semi-analytical model 
was developed based on nine SSC in situ data 
points and reflectance from WV2 band 7 (NIR1, 
centered at 833 nm). Mass-specific absorption at 
833  nm was estimated using Eq.  1. We applied 
the same value for mass-specific backscattering 
used in the Landsat 8 model. The dependence of 
backscattering on wavelength has been observed 
to be flat near the coast, making this a reasonable 
assumption (Loisel et  al. 2006). A single band 
semi-analytical model using PRISM reflectance 
data was developed for wavelength 875 nm with 

12 in situ SSC data points. Again, mass-specific 
absorption was estimated according to Eq. 1 and 
the same mass-specific backscattering value was 
applied. For all models, actual vs. predicted SSC 
values were compared, and RMSE and %RMSE 
were calculated.

SSC maps and distribution.—Because Landsat 8 
has a return interval of 16 d, we used the Landsat 
8 SSC model and 12 Landsat 8 scenes (corrected 
according to methods in section Image acquisition 
and pre-processing) to estimate SSC in Suisun Bay 
over 12 dates with cloud-free images from June 
2013 to May 2014. This time series of SSC enabled 
us to estimate spatially an annual average SSC, 
which is the model input parameter for MEM. 
Using zonal statistics in ArcGIS 10.2, we extracted 
annual average SSC values from pure water 
pixels in channels surrounding the Rush Ranch 
tidal marsh. Pure water pixels were located 30 m 
from the tidal marsh edge. We quantified the 
distribution of SSC measured values in the 
channels using summary statistics interquartile 
range and standard deviation.

Integration of remote sensing data with the Marsh 
Equilibrium Model

We tested the integration of the Landsat 8-based 
inputs of peak biomass and annual average SSC 
with MEM 3.76 (Morris et al. 2002) and a vegeta-
tion distribution model presented in Schile et al. 
(2014) that defines elevation ranges for four plant 
communities. Other input parameters came from 
Schile et al. (2014) (Table 3). The Marsh Equilibrium 
Model was run at elevations between 0 and 
300 cm NAVD88 in 10-cm increments, with pro-
jected SLR reaching 1 m after 100 yr, a moderate 
SLR projection evaluated by Schile et  al. (2014). 
Outputs were mean sea level, marsh elevation, 
and biomass at yearly time steps from 1 to 100 yr. 
Following methods of Schile et  al. (2014), mod-
eled elevations were applied to the corrected 1-m2 
lidar DEM (NOAA Coastal Services Center 2012). 
The modeled elevations were then transformed 
relative to the local tidal datum using the equa-
tion: (marsh elevation  −  mean sea level)/(mean 
higher high water − mean sea level). We classified 
the elevations into marsh habitat type based on 
elevation transitions between mudflat, low marsh, 
high marsh, and upland vegetation relative to 
mean sea level according to methods of Schile 
et al. (2014).

(1)ap
∗
=0.089e−0.0059(λ−500)
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Sensitivity analysis
We tested two types of feasibility regarding 

MEM performance. We compared model outputs 
derived from remote sensing inputs of peak 

biomass and annual average SSC and field-
measured inputs provided by Schile et al. (2014) 
and Ferner et al. (in press) to assess model sensi-
tivity to the differences between the two. Also, 
given uncertainties in remote sensing measures, 
we tested how sensitive the model was to error 
associated with remote sensing inputs. Model 
outputs were tested for 80- to 200-cm (marsh edge 
to upland) initial elevations at 10-cm intervals, at 
a single magnitude of SLR (100 cm by 2100). The 
scenarios tested (Table 4) were thus not based on 
variable SLR but instead on different initial con-
ditions (inputs) for peak biomass and SSC.

The elevation results of model runs (dz/dt) at 
10-year intervals were extracted for statistical 
comparison (n  =  10 time points). Response sur-
face modeling was used to generate response 
curves for each model run that incorporated 
both elevation and time in the nonlinear surface 
response. Comparison of response curves were 
performed by trend response surface analysis of 
projected elevations under the remote sensing 
run (Model run no. 1, Table 4) to projected eleva-
tions in 11 additional runs (Model run nos. 2–12, 
Table 4). All analyses were performed with JMP 
11 (SAS) statistical software (SAS Institute Inc. 
1989–2014). The timestamp at which significant 

Table 3. Marsh Equilibrium Model field inputs, from 
Schile et al. (2014).

Variable Value

Century sea-level rise (cm) 100
Initial rate sea-level rise (cm/yr) 0.24
Mean higher high water (cm NAVD88) 198
Mean sea level (cm NAVD88) 110
Suspended sediment concentration (mg/L) 37†
Marsh elevation (cm NAVD88) 0–300
Max. vegetation elevation (cm NAVD88) 200
Min. vegetation elevation (cm NAVD88) 80
Elevation of peak biomass (cm NAVD88) 170
Max. biomass (g/m2) 2400
Organic matter decay rate (/yr) −0.2
Root to shoot ratio (g/g) 3
Refractory carbon fraction, kr (g/g) 0.09
Belowground turnover rate (/yr) 1
Max (95%) root depth (cm) 40
Biomass seasonality Yes
Trapping coefficient (ks, cm−1·yr−1) 0.0328
Settling velocity (q, g·cm−3·yr−1) 0.00146

† Suspended sediment concentration value based on 
Ferner et al. (in press).

Table 4. Marsh Equilibrium Model runs for sensitivity analysis of suspended sediment concentration (SSC) 
and peak biomass inputs, and trend response surface (TRS) statistic and year for model runs no. 2–12 with 
significant (*P < 0.05) deviation from model run no. 1.

Model run no. Model run SSC (mg/L) Peak biomass (g/m2) TRS

1 RS† 30 2040 –
2 Field‡ 37 2400 0.9431, year 60
3 Field w/RS SSC§ 30 2400 0.9395, year 40
4 Field w/RS biomass¶ 37 2040 0.9274, year 60
5 RS + RMSE biomass†† 30 2366 0.9402, year 60
6 RS − RMSE biomass†† 30 1714 ns
7 RS + RMSE SSC‡‡ 33.38 2040 0.9461, year 80
8 RS − RMSE SSC‡‡ 26.62 2040 ns
9 RS + RMSE biomass, SSC§§ 33.38 2366 0.9326, year 60

10 RS − RMSE biomass, SSC§§ 26.62 1714 ns
11 RS + RMSE biomass, −RMSE SSC§§ 26.62 2366 0.9422, year 60
12 RS − RMSE biomass, +RMSE SSC§§ 1714 33.38 0.9424, year 60

Notes: ns, not significant. The TRS statistic is significant if <0.95.
† RS: remote sensing inputs for peak biomass and SSC.
‡ Field: published data as collected by in situ data collection (Schile et al. 2014).
§ Field w/RS SSC: field data for all inputs except the remote sensing SSC.
¶ Field w/RS biomass: field data for all inputs except the remote sensing peak biomass.
†† RS+ or −RMSE biomass: remote sensing peak biomass (±326 g/m2).
‡‡ RS+ or −RMSE SSC: remote sensing SSC (±3.38 mg/L).
§§ RS+ or −RMSE biomass and RMSE SSC (±3.38 mg/L) and (±326 g/m2).
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diversions appeared between response curves 
(df: 1, 22) associated with each run was identi-
fied at P  <  0.05. Finally, we calculated differ-
ences in elevation projections between Model 
run no. 1 and all other runs for each time point 
and starting elevation at 10-cm intervals to illus-
trate deviations between (1) remote sensing and 
field-based inputs and (2) error associated with 
remote sensing inputs.

Results

Biomass maps and pattern analysis
Biomass values from 368 measured field plots 

ranged from 3 to 3021  g/m2, with a mean of 
668  g/ m2. The biomass distribution was right-
skewed, with the top ten plots ranging from 2077 
to 3021  g/m2. When biomass was averaged by 
30-m Landsat pixel footprints, biomass values 
ranged from 98 to 1559 g/m2. Biomass averaged 
by AVIRIS pixel footprints ranged from 256 to 
1289 g/m2 (Table 5).

Landsat 8 reflectance data were used to pro-
duce a species invariant model of biomass, 
although one outlier pixel was removed because 
it was fully dominated by perennial pepper-
weed, with highly reflective white flowers. Use 
of the WDRVI2 (NIR reflectance scaled by 0.2) 
produced the best model for fully vegetated 
pixels, and best predicted high biomass values 
in fully vegetated pixels, while the simple ratio 
index RRed/RGreen produced the best model for 
all pixels including mixed pixels scaled by FVC 
(Table  5, Fig.  2). As a result, we applied both 

models and produced a biomass map (Fig.  3A) 
according to Eq. 2. RMSE for the 90th percentile 
plots (plots >1100 g/m2) was 326 g/m2. When this 
model was applied to an 8 August Landsat image 
of Rush Ranch, maximum biomass was estimated 
to be 2040 g/m2 within a channel edge pixel. We 
selected this value as the peak biomass value for 
the Rush Ranch site.

The best biomass model based on the WV2 dataset 
was based on the simple ratio index Rred/Rgreen and 
square-root-transformed biomass (Table 5, Fig. 2). 
This model also excluded perennial pepperweed 
plots. RMSE for the 90th percentile plots (plots > 
1190 g/m2) was 1033 g/ m2. The biomass model was 
applied to an 6 August WV2 image, and maximum 
biomass at the Rush Ranch tidal marsh was esti-
mated to be 1551 g/m2.

The PLS regression of AVIRIS bands generated 
an R2 of 0.52 and a RMSE of 172 g/m2. RMSE for 
the 90th percentile plots (plots >966  g/m2) was 
302 g/m2. The PLS biomass model was applied to 
the 28 May AVIRIS image. Maximum biomass at 
the Rush Ranch tidal marsh was estimated to be 
1770 g/m2. Overall %RMSE of the three models 
was similar, ranging from 15% to 17%, although 
%RMSE for high biomass plots was higher for 
the AVIRIS estimates than for the Landsat 8 or 
WV2 estimates (Table 5, Fig. 2).

(2)

If FVC>90 then
biomass = exp (5.0 ×WDRVI2 + 7.57) and

if 50 < FVC <90 then

biomass = exp (−5.29×SRred/green + 12.52)
FVC

Table 5. A comparison of empirical models from Landsat 8 OLI, WorldView-2, and AVIRIS sensors for map-
ping peak biomass in the Rush Ranch tidal marsh.

Sensor Model R2 n

In situ 
biomass 

range  
(g/m2)

RMSE  
(g/m2) %RMSE

RMSE 90th 
pct. (g/m2) %RMSE

Max. 
biomass  
(g/m2)

Landsat 8 If FVC >90, 
log(biomass) ~ WDRVI2

0.56 38 98–1559 227 16 326 71 2040

If 50 < FVC < 90, log(biomass 
× FVC) ~ Rred/Rgreen

0.57 47

WorldView-2 Sqrt(biomass) ~ Rred/Rgreen 0.22 322 3–2671 408 15 1033 69 1551
AVIRIS Biomass ~ b1…b204 0.52 46 256–1289 172 17 302 94 1770

Notes: Landsat 8 and WorldView-2 models were based on linear regression, and the AVIRIS model was based on partial 
least squares regression. FVC, fraction vegetation cover; WDRVI2, wide dynamic range vegetation index; Rred/Rgreen, simple 
ratio index with red and green bands; Max. biomass, peak biomass of Rush Ranch tidal marsh vegetation based on maps 
derived from each sensor; %RMSE, per cent normalized RMSE; RMSE 90th pct., RMSE for validation samples in the 90th per-
centile of biomass samples; AVIRIS, Airborne Visible/Infrared Imaging Spectrometer.
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Fig. 2. Plots of actual vs. predicted values of aboveground live biomass based on Landsat 8, Airborne Visible/
Infrared Imaging Spectrometer, and WorldView-2 reflectance data and empirical models described in Table 5.
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Fig. 3. (A) Map of aboveground live biomass at the Rush Ranch tidal marsh based on Landsat 8 reflectance 
data. (B) Map of peak biomass values (model RMSE—maximum; 1714–2040 g/m2) with 1-m2 corrected lidar-
derived digital elevation model.
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All Landsat 8-based peak biomass values were 
located at the channel edge, at the lower end of 
the marsh tidal frame (Fig.  3B). Peak biomass 
distributions were not statistically different 
than random (Global Moran’s I: z-score = −0.71, 
P-value = 0.48).

Suspended sediment concentration maps and 
distribution

Based on estimates of mass-specific absorption 
and scattering, a single band semi-analytical 
model of SSC was developed for Landsat 8 data 
with an RMSE of 3.38 mg/L and %RMSE of 22.5% 
(Table 6, Fig. 4). The final WV2 single band model 
estimated SSC for nine data points with an RMSE 
of 8.33  mg/L and %RMSE of 23.4% The final 
PRISM model estimated SSC with an RMSE of 
7.28 mg/L and %RMSE of 16.1% (Table 6, Fig. 4). 
Based on the Landsat 8 data, we estimated annual 
average SSC to be 30  mg/L (Fig.  5). Landsat 
8-measured SSC values in the channel adjacent to 
Rush Ranch were normally distributed, with an 
interquartile range of 29–32 mg/L, standard devi-
ation of 6.1  mg/L, and 80% of values falling 
between 28 and 33 mg/L (Fig. 6).

To test whether the annual trend in SSC matched 
the trend in Landsat 8 images, turbidity data from 
a continuous monitoring station at the study site 
(http://nerrsdata.org) were matched with reflec-
tance data from the 12 Landsat 8 scenes. Turbidity 
was converted to SSC using a regional turbidity–
SSC relationship (R2 = 0.79; Fleck et al. 2012). Both 
the in situ turbidity data and the Landsat-derived 
SSC generated the same seasonal trend in SSC 
ranging from approximately 20 mg/L in the win-
ter and up to nearly 100 mg/L in the spring.

Marsh Equilibrium Model sensitivity analysis
Comparison of model outputs using field inputs vs. 

remote sensing inputs.—Model inputs for data 

sourced from remote sensing products were 
slightly lower (11–16%) than those collected in 
the field. Therefore, when observed, deviations 
in model performance led to slightly lower 
projected rates of accretion over the 100-year 
time frame when remote sensing products were 
used. Trend response surface analysis identified 
significant diversion (P < 0.05) between field and 
remote sensing-based model runs at 60 yr due to 
high model sensitivity at the marsh edge (80–
140 cm NAVD88; relative starting elevation −0.34 
to 0.34; Table  4). However, model performance 
was insensitive to deviations in peak biomass 
and SSC across 97% of the marsh plain, initially 
characterized as high marsh habitat. Even after 
100  yr, projected elevations in this dominant 
marsh zone (150–200  cm NAVD88; relative 
starting elevation 0.45–1.0) were less than 10 cm 
different from field-sourced projections (Fig. 7).

Model sensitivity to error in remote sensing 
estimates.—Figs. 8A and 9H show the difference in 
MEM-projected elevation along an elevation 
gradient (X axis) and over time (Y axis) between 
two model runs: one using the remote sensing 
estimates of peak biomass and/or SSC, and one 
using the remote sensing estimates of peak biomass 
and/or SSC, plus or minus model RMSE. These 
figures indicate that from the marsh edge to upland 
(80–200  cm), biomass variability has a larger 
influence on elevation projections than suspended 
sediment variability, starting earlier in the 100-year 
model run and extending across a greater elevation 
range (Fig.  8A–D). The most concentrated and 
significant effects of biomass variability were 
observed at the marsh edge, whereby over- and 
underestimates of biomass based on RMSE values 
led to approximately ±20  cm differences at year 
100 (Fig. 8A, C). The greatest difference in elevation 
projections was found in a comparison between 
the remote sensing run (Model run no. 1, Table 4) 

Table 6. A comparison of single band semi-analytical models developed from Landsat 8 OLI, WorldView-2, 
and PRISM sensors for mapping suspended sediment concentration in Suisun Bay.

Sensor Semi-analytical model: SSC (mg/L) = R2 RMSE (mg/L) %RMSE In situ SSC range (mg/L)

Landsat 8 1715 × Rb5†/(1 − Rb5/0.1179) 0.66 3.38 22.5 37.8–52.8 (n = 7)
WorldView-2 1271 × Rb7‡/(1 − Rb7/0.1080) 0.45 8.33 23.4 37.8–73.4 (n = 9)
PRISM 1851 × R875§/(1 − R875/0.1211) 0.82 7.28 16.1 23.0–68.3 (n = 12)

Note: SSC, suspended sediment concentration.
† Rb5 = reflectance at band 5 (865 nm).
‡ Rb7 = reflectance at band 7 (833 nm).
§ R875 = reflectance at 875 nm.

http://nerrsdata.org


November 2016 v Volume 7(11) v Article e0158215 v www.esajournals.org

﻿� Byrd et al.

Fig. 4. Plots of actual vs. predicted values of suspended sediment concentration based on Landsat 8, PRISM, 
and WorldView-2 reflectance data and semi-analytical models described in Table 6.
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and the RMSE BM-SSC run (Model run no. 10, 
Table  4), with the latter being 38.7  cm lower at 
90  cm at 100  yr (Fig.  8H). However, the trend 
response surface analysis of these two runs found 
no significant difference due to lack of significant 
diversions between response curves across time 
and initial elevation (Table  4). These results 
demonstrate that while the trend response surface 
analysis is most useful for identifying nonlinear 
diversions between model trajectories, a compari
son of elevation projections at specific starting 
elevation points can reveal where model sensitivity 
is greatest.

Comparison of field and remote sensing-based vege
tation distribution maps.—Both field and remote 

sensing-based MEM projections, when applied 
to the corrected Lidar DEM of the tidal marsh, 
illustrated a subtle “sinking” of the marsh 
platform to lower in the tidal frame, and projected 
a change from high marsh habitat to low marsh 
habitat by 2100. A comparison of plant community 
maps indicates that the use of field and remote 
sensing inputs produced the same distributions 
for mudflat, low marsh, and high marsh at 100 yr 
(Fig. 9).

Discussion

In this study, we used synoptic measurements 
of two key variables, peak aboveground biomass 

Fig. 5. Time series of estimated suspended sediment concentration (mg/L) in Suisun Bay from June 2013 to 
May 2014 based on 12 Landsat 8 scenes.
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and annual average SSC, to improve understand-
ing of baseline tidal marsh conditions that influ-
ence ecogeomorphic feedbacks between tidal 
inundation and vertical accretion across space 
and time. We analyzed the spatial pattern and 
distribution of these satellite-based estimates 
and determined that they represent conditions 
across the spatial extent of a brackish tidal marsh. 

As a result, the MEM elevation projections based 
on these estimates should be applicable across 
this domain. We compared Landsat 8 data to 
hyperspectral (AVIRIS, PRISM) and high spatial 
resolution multispectral (WV2) data for mapping 
biomass and SSC. We determined that Landsat 8 
is suitable for this application due to its compara-
ble performance with the other sensors based on 
model error, its temporal frequency, and data 
access. Comparison of marsh elevation forecasts 
from Landsat 8 and field-based inputs to MEM 
found no significant difference in projections 
across more than 95% of the marsh plain area at 
100 yr, with both projections illustrating a subtle 
“sinking” loss of elevation of the marsh. This 
application of remote sensing data improves 
forecasts of coastal marsh elevations and vegeta-
tion distributions across regions relevant to 
decision-making by reducing uncertainty in 
input variables both within sites and at the land-
scape scale.

Because MEM is a dynamic model that accounts 
for nonlinear feedbacks between increased tidal 
inundation and increased rates of sediment 
accretion, it provides more accurate predictions 
of marsh loss than models that lack these feed-
backs and overestimate marsh vulnerability to 
SLR (Kirwan et  al. 2016a). However, MEM is an 
equilibrium model, and changing baseline con-
ditions (e.g., salinity, invasive species) may alter 
its performance. Increased flooding, subsidence, 
restricted sediment delivery, and salinity intru-
sions can lead to many different biogeomorphic 
feedbacks (e.g., nutrient supply, salinity stress, 
plant community changes), such that the net effect 
is less predictable (Kirwan and Megonigal 2013). 
Despite this uncertainty, hydrodynamic model-
ing of our study region has shown that vegetation 
and salinity regimes are likely to not have thresh-
old shifts over the next 50  years (Knowles 2010, 
Enright et  al. 2013), which is the regional plan-
ning horizon for the Bay Delta Conservation Plan, 
a comprehensive conservation strategy for the 
Sacramento–San Joaquin Delta, including Suisun 
Marsh (http://baydeltaconservationplan.com/).

Sensor comparison—biomass and SSC
The MEM calls for inputs of peak aboveground 

biomass. However, the challenge of using NDVI-
type indices derived from satellite data for esti-
mating biomass is that they asymptotically 

Fig. 6. Map of Landsat 8-measured annual average 
suspended sediment concentrations in pure water 
pixels adjacent to Rush Ranch.

Fig. 7. Difference in Marsh Equilibrium Model ele
vation projections derived from field-measured inputs 
and Landsat 8-based inputs as a function of present-
day marsh elevation. Differences are plotted along a 
cross-sectional marsh plain elevation gradient. The 
cumulative proportion of marsh area along the cross 
section from channel edge (80 cm) to upland bound
ary (200 cm) is provided for a subset of elevations.
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approach a saturation level at high biomass den-
sity (Tucker 1977) and do not estimate biomass 
well at 100% vegetation cover (Rocchio 2005). In 
addition, patch size, variable species composi-
tion, presence of litter, and water inundation 

pose challenges when developing biomass maps 
for wetland vegetation (Byrd et al. 2014). Despite 
these challenges, our Landsat 8-based hybrid 
model with WDRVI used for fully vegetated pix-
els and simple ratio red/green index for mixed 
pixels sufficiently estimated peak biomass with 
accuracy needed for the MEM. The WDRVI 
increases the linearity between biomass and NIR 
reflectance, thus reducing sensor saturation 
(Gitelson 2004). The use of a red/green index for 
pixels with a water signal is appropriate because 
the ratio of green to red reflectance is close to 1 
and avoids water absorption of NIR wavelengths 
(Motohka et al. 2010).

Compared with Landsat 8, the dynamic range 
of biomass predictions and overall accuracy was 
similar for the AVIRIS model. However, that 
AVIRIS image was collected early in the growing 
season, prior to peak biomass, so the estimated 
peak biomass was lower than the value required 
for the MEM. In the future, the planned HyspIRI 
hyperspectral satellite, with 30 m resolution and 
a 16-day return interval, will provide opportu-
nity for improved biomass modeling at different 
phenological stages (Turpie et al. 2015). Average 
error in the WV2 model was similar to those of 
Landsat 8 and AVIRIS, reflecting other studies 
that demonstrated the utility of WV2 for biomass 
estimation (Mutanga et al. 2012, Byrd et al. 2014). 
However, the WV2 model generated the lowest 
estimate of peak biomass.

With a return interval of 16 d, we constructed 
an estimate of average annual SSC using 12 
cloud-free Landsat 8 scenes from June 2013 to 
May 2014. While we had limited in situ samples 
to evaluate the Landsat 8 model, a time series of 
in situ SSC data derived from turbidity measure-
ments at a continuous monitoring station showed 
the same seasonal trends as in the Landsat 8 
imagery. To further test and validate the Landsat 
8 SSC model, additional in situ SSC should be 
collected coincident with Landsat 8 overpasses.

Fig. 9. (A) Present-day marsh habitat at Rush Ranch 
and comparison of Marsh Equilibrium Model projections 
of marsh habitat change based on (B) Landsat 8 derived 
inputs and (C) field-derived inputs for peak biomass 
and annual average suspended sediment concentration.

Fig.  8. The difference in Marsh Equilibrium Model projected elevation along the tidal marsh elevation 
gradient (cm NAVD88; X axis) and over time (0–100 yr; Y axis) between two model runs: one based on remote 
sensing estimates of peak biomass and/or suspended sediment concentration (SSC), and one based on remote 
sensing estimates of peak biomass and/or SSC, plus or minus model RMSE. (A) (+RMSE biomass) − (RS biomass); 
(B) (+RMSE SSC) − (RS SSC); (C) (−RMSE biomass) − (RS biomass); (D) (−RMSE SSC) − (RS SSC); (E) (+RMSE 
biomass, +RMSE SSC)  −  (RS biomass, RS SSC); (F) (+RMSE biomass, −RMSE SSC)  −  (RS biomass, RS SSC); 
(G) (−RMSE biomass, +RMSE SSC) − (RS biomass, RS SSC); (H) (−RMSE biomass, −RMSE SSC) − (RS biomass, RS 
SSC). See Table 4, Model runs 4–12 for input values.
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The WV2 SSC model accuracy was similar to 
the Landsat 8 model (23% RMSE). With a high 2 m 
resolution, the WV2 imagery allowed for estima-
tion of SSC in small channels present throughout 
tidal marshes. Although this satellite has a return 
interval of 1–2 d, the cost of commercial imagery 
could pose limitations for repeated acquisitions. 
PRISM has the narrow bands and high spatial 
resolution to accurately map SSC in small chan-
nels, and its accuracy was higher than the other 
sensors (16% RMSE). However, the costs of pre-
paring and executing flight paths over the study 
site are likely to limit its temporal resolution.

In mapping SSC in Suisun Bay and its tidal 
channels, we found there to be significant 
influence from CDOM at red wavelengths (see 
Fichot et  al. 2016). As tidal marshes are a main 
source for CDOM, extension of this application 
to other marsh sites will likely require sensors 
with NIR bands. Additionally, a remote sensing 
platform with bands in the SWIR can be useful 
for atmospheric correction over turbid waters 
(Vanhellemont and Ruddick 2015). The successor 
to WV2 (WorldView-3) possesses bands in NIR 
and the SWIR and has an improved resolution of 
1.2 m. These features may make WorldView-3 an 
ideal sensor for the measurement of SSC in small 
marsh channels.

Spatial pattern and distribution of model inputs
All Landsat 8-based peak biomass values were 

located at the channel edge, and locations of peak 
biomass were randomly distributed across the 
Rush Ranch tidal marsh area (Fig. 3B). This distri-
bution of peak biomass values across the model 
spatial extent and their consistent position low in 
the tidal frame provide confidence that the 
satellite-measured peak biomass value and the 
biomass/elevation growth response curve, a key 
parameter of MEM, represent conditions across 
the tidal marsh extent; therefore, MEM elevation 
projections should be applicable across the model 
domain. However, the response of vegetation to 
sea level could vary across a mosaic of marsh 
landscapes. Instead of a single growth response 
curve, there are a family of curves, each represent-
ing a different combination of variables that affect 
vegetation growth, such as salinity and sediment 
permeability (Morris et al. 2013). The choice of a 
different curve may be based on increased under-
standing of how drainage affects the shape of the 

curve, or how curves differ across plant communi-
ties. A cluster of peak biomass values may also 
indicate the need for a different growth curve for 
another portion of the marsh. In particular, inva-
sive pepperweed, which can generate high bio-
mass, grows across a wide range of elevations in 
the Rush Ranch marsh. An important next step 
should be to generate a growth response curve for 
this species to determine how it may affect marsh 
sustainability. Absent perfect knowledge, we use 
a single curve to represent the entire marsh.

The synoptic measurements of SSC with satel-
lite data represent the first characterization of the 
spatial and temporal dynamics of this variable 
in the channel system surrounding Rush Ranch. 
Previous measurements of SSC were limited to 
a one month period at four stations within the 
marsh (Ferner et  al., in press). This improved 
understanding of SSC baseline conditions greatly 
increases the capacity to address many ques-
tions related to the sustainability of this brackish 
marsh. With this information, we may develop 
more fine-tuned scenarios of change and test with 
greater accuracy the feedbacks between organic 
and inorganic inputs. In addition, the model esti-
mate of annual average SSC, 30 mg/L, was well 
represented in the channels surrounding Rush 
Ranch, with 80% of Landsat-based values falling 
between 28 and 33 mg/L.

MEM sensitivity
In a comparison of field and remote sensing 

inputs, the low marsh and mudflat transition zone 
(80–140  cm NAVD88) was the most sensitive 
marsh region to the lower remote sensing values, 
with differences >10 cm after 100 yr (Fig. 7). These 
differences were associated with feedbacks 
between the peak biomass and SSC inputs. Alone, 
remote sensing peak biomass or SSC values used 
here were accurate enough to generate the same 
elevation forecasts as field-derived data, with dif-
ferences <10 cm for all elevations except the lowest 
(80–90 cm NAVD88; Table 1, Byrd 2016).

Greater differences between biomass remote 
sensing estimates and their error terms produced 
more variation in elevation projections, earlier 
in the model run and across a greater elevation 
range (Fig. 8A, C). Feedbacks between peak bio-
mass and SSC were also found when evaluat-
ing MEM response to the range of input values 
derived from remote sensing error (±RMSE). 



November 2016 v Volume 7(11) v Article e0158221 v www.esajournals.org

﻿� Byrd et al.

Here, the RMSE BM-SSC run (Model run no. 10, 
Table 4, Fig. 8H) exhibited the greatest deviation 
from the remote sensing-estimated values, with 
a difference of 39  cm after 100  yr (Byrd 2016). 
Above an elevation of 160 cm, differences in this 
comparison dropped below 10 cm (Fig. 8H).

The interaction of biomass and SSC at the 
lower marsh transition may indicate the vul-
nerable nature of this zone to both organic and 
inorganic accretion processes, and especially bio-
mass enhanced sediment deposition. However, 
the elevation at the marsh edge that exhibits the 
highest sensitivity to MEM inputs represents less 
than 3% of the marsh plain area (Fig. 7). Finally, 
remote sensing and field-based elevation projec-
tions produced the same maps of vegetation dis-
tributions at 100 yr (Fig. 8).

It is important to consider the drivers and 
effects of marsh erosion on marsh sustainabil-
ity (Kirwan and Megonigal 2013). While MEM 
models accretion and not erosion processes, our 
results here show that MEM sensitivity at the 
marsh edge for this site, characterized by steep 
channel banks, would not significantly influence 
estimates of total marsh area loss due to changes 
in accretion. However, tidal marshes can be vul-
nerable to erosion, particularly when exposed 
to wave action. Wave action can make marshes 
unstable in the horizontal direction, even if resil-
ient in the vertical direction (Fagherazzi et  al. 
2013). Marsh loss through marsh edge erosion 
occurs in many coastal environments, with loss 
rates ranging up to 3  m/yr (Fagherazzi et  al. 
2013). In these environments, accretion models 
such as MEM would be limited in their capacity 
to determine the fate of tidal marshes.

Implications for using remote sensing data
The results of our sensitivity analysis demon-

strate the feasibility of running MEM or other 
newly emerging coastal forecasting models with 
remote sensing data. For example, remote sens-
ing of SSC would inform a coupled model of 
marsh erosion and migration (Kirwan et  al. 
2016b), while remote sensing of biomass would 
provide biomass distributions for Hydro-MEM, 
which links a hydrodynamic model with MEM 
(Alizad et al. 2016). However, some limitations of 
using remote sensing data should be considered. 
Estimates of peak biomass are dependent on spa-
tial scale; based on our surveys, the highest 

values were found infrequently at the 1-m2 
scale—12 plots of 368 exceeded 2000 g/m2, while 
average peak biomass at the 30-m scale was sub-
stantially lower. We found that scaling biomass 
by FVC in mixed pixels allowed us to adequately 
estimate biomass using Landsat 8 data (16% 
RMSE) and obtain peak biomass values compa-
rable to those measured in the field. In addition, 
the 1-m2 plot with the highest biomass measured 
at 3021 g/m2 and contained 90% cover of woody, 
invasive perennial pepperweed. Pepperweed 
was not included in the model of peak biomass, 
as its spectral signature varied significantly from 
other marsh vegetation. Pepperweed has become 
dominant in portions of Rush Ranch in recent 
years, and with its woody structure, it has poten-
tial for yielding high biomass. More research is 
needed on the influence of invasive species such 
as pepperweed on marsh sustainability.

One limitation to using Landsat 8 for estimat-
ing annual SSC is the inability to control for tidal 
stage at the time of image acquisition. Sediment 
concentrations measured at different times in the 
tidal cycle may serve as conflicting indicators of 
marsh vulnerability, with high concentrations at 
flood tides representing a stable marsh and high 
concentrations at ebb tides representing an erod-
ing marsh (Ganju et al. 2015). Also turbidity levels 
(correlated with SSC) are higher at low tides in our 
study region (Fichot et al. 2016). Of the 12 scenes 
selected for calculation of our annual SSC value, 
six were collected during ebb tide. However, the 
resulting estimated value matched closely with 
SSC measured in the field (30 vs. 37 mg/L).

Also, determining SLR impact in the inter-
tidal zone is highly dependent on the accuracy 
of the elevation data available for those areas. As 
shown in the sensitivity analysis, minor changes 
in elevation on the order of centimeters can drive 
key processes such as accretion (Gesch 2009), 
and so uncertainty in elevation data in coastal 
impact models can limit the accuracy of predic-
tions and their usefulness for management and 
planning (Runting et al. 2013). Bare earth DEMs 
derived from lidar typically have high vertical 
error in tidal marshes, due to the interference 
of dense marsh vegetation with the lidar signal 
(Chassereau et al. 2011). Multiple approaches are 
being developed to correct this error. In particular, 
the use of vegetation-specific correction factors 
with real-time kinematic GPS and high-resolution 
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vegetation maps have been found to reduce 
RMSE in a Georgia salt marsh from 16 to 10 cm 
(Hladik and Alber 2012) and reduce RMSE from 
21.2 to 9.8 cm in a San Francisco Bay salt marsh 
(McClure et al. 2016). With a vegetation-corrected 
lidar DEM, other key MEM variables should be 
derived with remote sensing data, including ele-
vation of peak biomass and minimum and maxi-
mum elevations of marsh vegetation.

Applications for remote sensing-based forecasts of 
coastal habitats

Landscape-scale projections derived from 
improved understanding of baseline conditions 
will help coastal management that occurs across 
a region, both for natural resources and coastal 
communities. Regional projections of marsh hab-
itat change can be analyzed with landscape met-
rics such as patch size, edge, and shape 
complexity to assess future fish utilization of 
habitats (Torio and Chmura 2015). Also, projec-
tions of salinity changes and habitat connectivity 
can be combined to assess future habitat suitabil-
ity for bird species (Zhang and Gorelick 2014).

While not a biogeochemical model, the eco-
logical processes modeled in MEM can generate 
forecasts of soil carbon sequestration. Scientists 
are currently testing approaches for accounting 
for carbon emissions and removals associated 
with wetland management according to 2013 
IPCC Wetlands Supplement guidelines (IPCC 
2014). Quality of reporting is measured from low 
(Tier 1) to high (Tier 3) depending upon data 
availability and analytical capacity. The integra-
tion of remote sensing data with MEM may be 
a feasible approach for moving to a Tier 3 GHG 
inventory of coastal wetlands.

In addition, tidal marshes have the potential 
to protect many flood-prone coastal populations 
mainly by reducing wave energy reaching the 
coastline (Burkett and Davidson 2012, Temmerman 
et al. 2013). The long-term sustainability of the use 
of tidal marshes for ecosystem-based coastal pro-
tection is limited by the capacity of tidal marshes 
to keep up with SLR through natural accretion of 
organic and mineral sediments (Temmerman et al. 
2013). Areal extent of marshes may be one of the 
most important constraints to their use for coastal 
defense, and the space needed will increase with 
tidal range (Bouma et al. 2014). Regional models 
of marsh accretion parameterized with remote 

sensing data could have important applications 
for forecasting the continued role of tidal marshes 
for coastal flood protection.

Finally, an updated version of MEM will also 
increase the feasibility of its application at the 
landscape scale by simplifying its parameter-
ization. In MEM 5.4, the model makes a bulk 
density calculation based on soil organic and 
inorganic matter concentrations and derived 
from first principles (Morris et al. 2016). Taking 
the approach that a sediment pedon, or 3D unit 
of soil, is a stack of annual cohorts equilibrated 
with rising sea level, the final bulk density and 
mass of a cohort after it has passed the root zone 
will equal the rate of vertical accretion.

Conclusion

Regional planning documents call for forecasts 
of tidal marsh elevation change to support cli-
mate change adaptation decisions, although 
models have limited use if data inputs are not 
representative across sites and landscapes. Using 
a synoptic view of key parameters provides 
greater certainty in those forecasts. The use of 
remote sensing with MEM should advance 
regional projections of tidal marsh vegetation 
change by better parameterizing MEM inputs 
spatially and accounting for the organic and inor-
ganic feedbacks in marsh accretion, compared 
with other regional models. The ability to use 
remotely derived datasets—SSC, aboveground 
marsh plant biomass, as well as lidar DEMs—to 
run a marsh projection model points to more effi-
cient and effective efforts to map coastal wetland 
responses across the vast U.S. coastline. Improved 
information from remote sensing data should 
increase the capacity for coastal models such as 
MEM to better support planning for coastal eco-
system services, including habitat, carbon seques-
tration, and coastal protection from flooding. 
Further, with fieldwork required to calibrate 
MEM performance limited to a dated soil core 
organic matter profile, this approach may be use-
ful on globally remote regions as well.
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